摘要
为有效解决风电大规模并网过程中面临的并网难和弃风等问题,实现可再生能源大规模平滑并网并保证大电网的安全稳定运行,采用集成经验模态分解(ensemble empirical mode decomposition,EEMD)和最小二乘双支持向量回归机(least square twin support vector regression,LSTSVR)算法进行风电场风速预测。分别介绍了LSTSVR、EEMD及自适应变异粒子群算法原理。给出基于EEMD和LSTSVR的风速预测流程,以安徽女儿岭风电场测风声雷达30、70 m处风速采样数据为例,开展基于EEMD和LSTSVR的风速预测算法验证,预测结果误差分析表明:基于EEMD+LSTSVR+自适应变异粒子群算法可以实现风电场风速的高精度预测。
-
单位沈阳工程学院; 国网河南省电力公司