为了克服传统的多视角分类器无法充分最小化结构风险的不足,提出了基于权重的多视角全局和局部结构风险最小化分类器。该分类器利用特征和视角的权重,使得分类器更符合数据集的分布,从而提高分类器的性能,更有利于最小化结构风险。在Mfeat、Reuters、Corel3个多视角数据集上的实验表明,通过引入某一数据集中每个样本的视角和特征权重,可以使得该分类器对数据集的分类性能更好。