摘要

目前遥感地质的影像解译主要以传统的目视解译为主,借助经验,方法落后、效率低下,且缺乏基于光谱的计算机自动分类、基于专家知识的决策树模型或面向对象特征等自动提取方法;目前遥感地质的解译主要强调遥感影像的空间分辨率,而对于图像波谱数据利用非常少。本研究旨在通过各种图像变换或增强手段,发挥人眼对部分彩色空间图像特别敏感的特点,利用已有地质背景资料划分符合地质习惯的单一地层或岩体的区域,建立典型的感兴趣区,然后计算其平均波谱,进而利用ENVI软件监督分类中的神经网络分类工具,设定恰当的权重与临界阈值,最后达到较好区分不同地层或岩体的目的。本研究选择甘肃北山黑山地区,利用lansat8多光谱数据进行试验,其研究成果可为遥感地质工作提供快速智能的影像解译方法提供参考,同时也可以应用于青海、西藏等广阔的基岩出露区域,为矿产资源勘探提供科学依据和决策支持。