摘要
由于自然场景中的图像背景复杂、文字排列不规则、光照条件不确定等因素文字检测难度较大,且传统检测方法的效果并不理想。在研究文字分割检测方法PSENet(Progressive Scale Expansion Network)的基础上,提出了一种针对自然场景文字检测的改进方法。该方法由卷积神经网络提取特征模块,再通过渐进式规模扩张对文字区域进行分割检测。改进点主要是使用高精度的语义分割网络RefineNet(Refinement Network)对卷积网络特征提取模块进行优化,且增加较多的残差连接及链式池化,提高网络对文字区域的检测精度。通过对数据集ICDAR2015的实验结果对比表明所提出的改进算法在精度方面略高于改进前,且能更好地解决文字粘连问题。
- 单位