一种基于多示例学习的运动员检测方法

作者:毋立芳; 汪敏贵; 简萌*; 刘旭
来源:信号处理, 2020, 36(09): 1399-1406.
DOI:10.16798/j.issn.1003-0530.2020.09.003

摘要

体育视频包含大量不同类型的人体,其中运动员的行为与比赛进程和视频内容直接相关,因此运动员检测是体育视频分析的关键环节。现有人体目标检测算法在通用人体检测任务上取得了良好的性能,但是无法有效区分运动员和非运动员。专门训练一个运动员检测模型需要标注大量的运动员位置,成本较高。本文提出了一种基于多示例学习的人体目标检测方法。在通用人体检测的基础上,引入多示例学习模块,基于图像级标注,通过弱监督方式自动学习获取特征映射矩阵,将人体特征映射到运动员特征空间,最后通过度量人体特征与运动员特征之间的相似度,实现运动员与非运动员的区分。对比实验结果表明,本文方法充分利用通用人体检测框架,以极小的标注数据量达到了专门训练运动员检测模型的精度。