摘要
【目的】利用电子鼻和分光测色仪建立一套快速检测茶树叶片氮含量的无损伤检测方法。【方法】供试样品为茶树顶芽向下第3~4片无损伤叶片。在预实验中优化了气体收集瓶体积、顶空预热温度和顶空时间等参数。采用电子鼻自带Winmuster软件将经过优化后的传感器响应特征值进行主成分分析(principal component analysis,PCA)、线性判别法分析(linear discriminant analysis,LDA)和负荷加载分析(loadings analysis,LA),筛选出灵敏性最好的传感器。同时用分光色差仪对茶树叶片色度值进行测定。样品的测量部位是叶肉区,每组20次重复。色度值主要包括L (表示黑白或者亮暗)、a (表示红绿)、b (表示黄蓝)值。采用Origin 8.0软件对测色仪L、a、b值分别进行一元线性回归分析。利用SPSS 16.0软件采用LSD法进行单因素方差分析(one-way Anova),并进行t检验。对分光测色仪中色差指标进行筛选,以获得相关系数最高的参数。采用凯氏定氮法测定茶叶总氮含量。正式试验第二步是以不同氮含量下的电子鼻和分光测色检测数据为基础,分别建立气味、颜色、气味结合颜色的3种氮含量预测模型,并进行比较分析。【结果】通过预备试验,建立了气体收集器体积为50 mL、顶空预热温度为30℃、顶空时间为30 min的电子鼻检测体系。正式试验第一步确定了以对氮氧化合物灵敏(S2),对甲烷灵敏(S6),对无机硫化物灵敏(S7),对醇类、醛类、酮类物质灵敏(S8),对有机硫化物灵敏(S9)的传感器为主要传感器。根据L、a、b表色系统,b值与叶片缺氮程度呈线性相关。正式试验第二步利用气味、颜色、气味结合颜色建立的3个氮含量预测模型都具有可行性,其中气味结合颜色建立的预测模型准确率最高,达到90%。【结论】用气味结合颜色的预测模型预测茶树叶片氮含量准确度较高,可在实际工作中进行运用。
-
单位山东农业大学; 作物生物学国家重点实验室