摘要

面向分属于不同投资和运营主体的多个冷热电联供型微网构成的多微网系统,该文提出了一种基于多主体博弈的多微网系统协同优化方法,通过博弈论建立多微网系统的协同优化模型,实现各个微网的利益均衡。针对该模型Nash均衡求解困难的问题,提出了一种改进的Nash-Q学习算法。该算法采用深度神经网络来拟合Nash-Q学习算法中的价值函数,不仅有效解决了Nash-Q学习算法直接应用于复杂环境时遇到的维数灾难问题,并且保证了算法的后效性,能快速完成合理有效的在线优化。实验结果表明,相较于传统数学规划方法和贪婪算法,改进的Nash-Q学习算法能够学习到Nash均衡策略,实现各微网间电能互补,降低各微网的运行成本,验证了所提模型和算法的有效性。