摘要
CPU/GPU异构混合系统是一种新型高性能计算平台,但现有并行空间插值算法仅依赖CPU或GPU进行加速,迫切需要研究协同并行空间插值算法以充分利用异构计算资源,进一步提升插值效率。以薄板样条函数插值为例,提出一种CPU/GPU协同并行插值算法以加速海量激光雷达(light detector&ranger,LiDAR)点云生成数字高程模型(DEM)。通过插值任务的分解与抽象封装以屏蔽底层硬件执行模式的差异性,同时在多级协同并行框架基础上设计了Greedy-SET动态调度策略,策略顾及底层硬件能力的差异性,以实现异构并行资源的充分利用和良好负载均衡。实验表明,协同并行插值算法在高性能工作站上取得1...
-
单位武汉大学; 测绘遥感信息工程国家重点实验室