摘要
为解决当前低照度图像增强问题,提出了一种基于双残差卷积网络的图像增强算法。首先,根据Retinex理论模型,将正常照度图像合成低照度图像,再分别将它们分解在R(红)、G(绿)、B(蓝)3个分量上,然后通过特征提取模块和双残差模块学习低照度图像与正常照度图像在各分量的映射关系,获得各分量上的增强图像,最后合成增强的RGB图像。采用双边滤波优化增强的RGB图像,使得所获得的图像更加接近参考图像。实验表明,本文所提算法,对于处理合成的低照度图像,峰值信噪比最高可达25.931 1dB,结构相似度最高可达0.945 2;对于处理真实的低照度图像,盲图像质量评估指标高于其他算法,且运行速度更快。
- 单位