摘要

针对316L不锈钢细长管磁粒研磨加工过程中,最佳工艺参数难以选择,以及加工后对工件内表面粗糙度(Ra)的预测问题,将影响磁粒研磨316L不锈钢细长管内表面粗糙度的四个工艺参数作为输入值,内表面粗糙度作为输出值,构建粒子群(PSO)优化极限学习机(ELM)模型来预测316L不锈钢细长管内表面粗糙度,利用PSO对工艺参数进行全局寻优,获得最佳工艺参数组合,最后通过试验与预测结果进行对比。构建的PSO-ELM表面粗糙度预测模型拟合优度R2为0.984 8,绝对误差(MAE)为0.013 4,均方根误差(RMSE)为0.021 4。得到的最佳工艺参数组合为:主轴转速2 389.011r/min,进给速度3.167 mm/s,磨料粒径216.185μm,加工时间35.856 min,预测Ra为0.178μm。对工艺参数进行调整,试验得到的Ra为0.182μm,与预测值相比误差为2.24%。基于PSO-ELM方法构建316L不锈钢细长管内表面粗糙度预测模型,实现对工件内表面粗糙度的精确预测,应用粒子群方法得到最佳工艺参数组合,提高了磁粒研磨316L不锈钢细长管的加工效率。