摘要
针对基于传统BP神经网络的齿轮故障诊断方法存在收敛速度慢,误差较大等问题,提出经验模式分解(EMD)与BP神经网络相结合的齿轮故障诊断方法。首先简述经验模式分解和BP神经网络的基本原理,然后采用EMD方法提取齿轮时域信号中的各个IMF分量,计算IMF分量中故障信号能量特征参数,将这些能量特征参数作为BP神经网络输入参数进行故障诊断。在齿传动故障实验台上采集足够的样本数据进行实验研究。结果表明:与传统的BP神经网络相比,可将训练误差从0.01降低至0.001左右。此外,训练迭代次数可减小至10次以内。
- 单位