摘要
卷积神经网络(Convolutional Neural Networks,CNN)已被广泛应用于图像处理领域.基于CNN的目标检测模型,如YOLO,已被证明在许多应用中是最先进的. CNN对计算能力和内存带宽要求极高,通常需要部署到专用硬件平台,FPGA因其高性能、低功耗和可重配置性成为CNN的有效硬件加速器.以往的基于FPGA的目标检测加速器主要采用传统卷积算法,然而,传统卷积算法的高运算复杂度限制了加速器的性能.基于此,本文设计了一种基于Winograd算法的目标检测加速器.考虑到各模块间的联系,采用模块融合策略融合卷积层和池化层模块,降低数据移动次数,减少片外存储器访问次数,提高加速器整体性能.以YOLO2模型为例,对数据访问模式、池化内核、参数重排序、数据通路优化进行分析设计,并部署在U280板卡上.实验结果表明,量化后mAP降低了0.96%,性能达249.65 GOP/s,是Xilinx官网所给数据的4.4倍.