摘要
针对非下采样轮廓波变换(NSCT)域内基于脉冲耦合神经网络(PCNN)的图像融合方法融合效果较差、计算复杂度较高等问题,提出一种在非下采样剪切波变换(NSST)域内基于压缩感知(CS)和自适应PCNN的融合算法。源图像在NSST域内被分解成高低频,采用改进的PCNN融合低频子带系数,使用像素的平方差总和当作其激励因素,选取方向梯度总和作为其链接强度,对计算量较大的高频子带系数采用CS进行处理,经过NSST逆变换获得融合图像。实验结果表明,与NSCT融合算法、NSST与PCNN相结合的算法等相比,该算法能获得较好的信息熵、空间频率、边缘信息评价因子,且运行时间较短。