摘要

为了提高行人重识别(Re-ID)的准确率和适用性,提出了一种基于向量注意力机制GoogLeNet的Re-ID方法。首先,将3组图像(锚、正、负)输入到GoogLeNet-GMP网络中,获得分段式特征向量。然后,利用空间金字塔池化(Spatial Pyramid Pooling, SPP)对来自不同金字塔等级的特征进行聚合,并引入注意力机制,通过对代表目标视觉信息的多尺度池化区域进行整合,获得多个语义等级上的可区分性特征。同时,将两个不同损失函数的混合形式作为最终损失函数。在Market-15012和Duke-MTMC3数据集上进行实验,结果表明,相比其他优秀方法,所提方法在Rank-1和mAP指标方面表现更优。

全文