摘要

蝴蝶优化算法是近年来提出的一种新型自然启发式算法。针对基本蝴蝶优化算法收敛速度慢、求解精度低、稳定性差等问题,提出了一种融合变异策略的自适应蝴蝶优化算法。通过引入动态调整转换概率策略,利用迭代次数和个体适应度的变化信息动态调整转换概率,有效维持了算法全局探索与局部搜索的平衡;通过引入自适应惯性权重策略和局部变异策略,利用惯性权重值和混沌记忆权重因子进一步提高了算法的多样性,有效避免算法早熟收敛,同时加快了算法的收敛速度和求解精度。利用改进算法对12个基准测试函数进行仿真实验,与基本蝴蝶优化算法、粒子群算法、樽海鞘群算法、灰狼优化算法等其他算法对比表明,改进算法具有收敛速度快、寻优精度高、稳定性强等优异性能。