针对现有学术论文推荐方法不能充分利用科研社交网络中实体间的异质关系,且大多聚焦于预测评分的准确性,忽略用户偏好顺序的问题,提出一种基于异质网络分析的列表级排序学习推荐方法。首先采用异质网络分析充分探究科研社交网络中实体之间的关系,在此基础上将异质网络分析获取的信息融入列表级排序学习框架中,对学术论文的推荐排序列表进行优化,最终得到为科研人员推荐的学术论文列表。在科研社交网络科研之友数据集上的实验结果表明所提方法较其他传统推荐方法取得了更好的结果,验证了该方法的有效性。