针对供水管道漏水声音信号数据集匮乏、漏水情况多样需反复采集确定漏水、检测准确率低等问题,提出一种基于条件生成对抗网络的增强漏水信号数据集的方法。将深度对抗网络与条件生成对抗网络相结合对漏水信号数据集进行数据增强,用扩充后的数据集对一维卷积神经网络进行训练并对不同实地采集的样本进行漏水信号识别。验证表明:一种管质的某种程度漏水信息经对抗网络进行数据增强后,具有该管质未采集的漏水信号特征,能用于更加细微的漏水信号检测。该方法也适用于其它管质各种情况的漏水检测,具有良好的实用性。