模式识别与机器学习

作者:孙仕亮; 赵静
来源:计算机教育, 2021, (02): 2.
DOI:10.16512/j.cnki.jsjjy.2021.02.001

摘要

<正>内容简介本书系统介绍了模式识别与机器学习的基础理论、模型与算法,兼顾前沿知识的融入。以贝叶斯学习思想贯穿始终,并适时与其他重要知识点(如支持向量机、深度学习等)进行交叉和关联,便于读者在形成良好知识体系的同时保持对整个领域知识的把握。全书共14章和4个附录,循序渐进地剖析模式识别与机器学习领域。首先介绍贝叶斯学习基础、逻辑回归、概率图模型基础、隐马尔可夫模型和条件随机场,接着介绍支持向量机、人工神经网络与深度学习、高斯过程、聚类、主成分分析与相关的谱方法,最后介绍确定性近似推理、随机近似推理和强化学习。附录包括传统的模式识别与机器学习方法,即近邻法和决策树,还有向量微积分和随机变量的变换等与本学科强相关的重要知识点。