摘要
针对卷积神经网络在提取图像特征时所造成的特征信息损失以及降低高维度图像特征数据等问题,提出了一种改进卷积神经网络的图像检索优化方法。该方法首先利用融合的卷积层提取图像特征,并在融合的卷积层之间添加全连接层以减少特征信息的丢失;然后采用主成分分析法对高维的特征数据进行有效的降维处理;最后采用余弦相似度的方法进行相似度匹配,以实现相似图像的检索。采用当前经典的LeNet-L、LeNet-5等方法同文中方法在图像检索性能评价指标上进行对比实验。实验结果表明,所提出的检索方法比文中其他检索方法在查全率和平均查准率方面提高了3%~27.3%。
- 单位