一种基于多模态数据的设备生产智能规划方法

作者:梁泽锋; 余志文; 杨楷翔; 孟献兵; 陈俊龙
来源:2021-12-27, 中国, ZL202111609391.3.

摘要

本发明公开一种基于多模态数据的设备生产智能规划方法,包括:1)对制造过程进行数据采集,得到多模态数据;2)对多模态数据进行标准化;3)对单个制造步骤构建训练集;4)对每个制造步骤的状态构建类别-动作映射关系;5)构建并训练深度神经网络;6)用训练好的深度神经网络对每个制造过程中采集到的数据进行分类;7)根据分类结果选择相应动作;8)对每个制造步骤重复进行分类和动作选择,完成动作规划。本发明充分利用制造过程中收集到的多模态数据和深度神经网络,不仅可以识别每个步骤的当前状态,并根据当前状态进行动作规划,实现制造过程的动作智能规划,减少人工干预。此外,还可以增加动作规划的可解释性和准确性。