摘要
在车牌字符识别应用中,超球面支持向量机核函数的选取一直采用单一核函数方案,存在识别正确率不高或过程较繁琐的问题。针对以上不足,将单一径向基核函数、混合核函数分别应用到超球面支持向量机的决策函数中,找到径向基核函数参数和混合核线性组合交叉概率的最优取值,提出一种超球面混合核支持向量机(MHS-SVM)。将Computational Vision研究小组数据集转换为一维矢量提取特征,采用此算法进行识别验证。试验结果表明,较已有的欧拉数特征分类和组合支持向量机,混合核方案过程简洁,具有更高的识别正确率,同时拥有较好的识别速率。
-
单位中国石油大学胜利学院