摘要

基于Hyperion高光谱影像,对提取植被覆盖度的传统像元二分法进行了改进,提出通过地物分类来提高植被覆盖度提取精度的算法.该算法先对研究区进行分类,在较高分类精度的基础上,结合不同地物的NDVI频率累积图和实际情况得到各类地物的植被覆盖度,最后得到研究区域的整体植被覆盖度.结果表明,经支持向量机分类的总体精度为83.2%,Kappa系数为0.710;相同NDVI值,林地的植被覆盖度>农田的植被覆盖度>草地的植被覆盖度,实验结果与实际基本相符;改进的像元二分算法改善了传统像元二分法中存在的水体、裸地非植被覆盖区得到非0的植被覆盖度和高植被覆盖地区检测灵敏度下降等问题,丰富了传统像元二分法的细节信息,得到更符合实际的植被覆盖度.