<正>例1(2017年全国高中数学联赛辽宁赛区预赛第12题)如图1,设I为△ABC的内心,△AIB的外接圆为⊙O,CA、CB与⊙O交于点P、Q.证明:AQ∥BP.分析如图1,欲证AQ∥BP,需证∠CAQ=∠CPB.注意到A、P、B、Q四点共圆,∠CQA=∠CPB,即需证∠CAQ=∠CQA,需证CA=CQ.只需证明△AIC≌△QIC即可.证明如图1,连接CI,IQ.