摘要

本发明公开了一种基于检测约束的快速动态目标抓取方法,包括以下步骤:S1建立快速目标检测方法;S2、用迁移学习的方法对S1中的网络进行训练;S3、使用S2中训练好的模型,基于摄像头获取的RGB图像数据流进行目标检测,实现对真实环境中抓取物体的分类与标注;S4、设计物体边界框矫正策略,减小图像中标注的边界框与真实边界框的偏差;S5、利用深度信息算法估计目标物体抓取点的深度值;S6、将抓取位姿映射到机器人操作空间中的三维抓取位姿。本发明提出了一种基于检测约束的快速动态目标抓取方法,并且建立MobileNetV3融合YOLOV4检测方法的检测算法,可以满足抓取操作对实时性的要求。