摘要
进行粗糙集连续属性离散化时,获取的断点集并非最优集合,导致离散效果较差。对此,提出面向粒子群优化BP神经网络的粗糙集连续属性离散化算法。对粗糙集连续属性离散化进行分析,采用粒子群算法改进BP神经网络中的权值与阈值,基于优化后的BP深度神经网络对具有连续属性的信息系统进行分类,从而获取多个断点,形成子断点集,进而构建候选断点集。将候选断点集映射成粒子群算法中的粒子,通过改变粒子的速度与位置,找到最佳断点集,完成粗糙集连续属性的离散化。实验结果表明提出的方法可以较好地实现连续属性的离散化,数据一致性最高时趋近于100%,且在不同算法下的分类精度与收敛速度均较高,说明该方法有着较强的应用前景。
- 单位