摘要
知识追踪是一种重要的认知诊断方法,往往被用于在线学习平台、智能辅导系统等信息化教学平台中.知识追踪模型通过分析学生与课程作业的交互数据,即时模拟学生对课程知识点的掌握水平,模拟的结果可以用来预测学生未来的学习表现,并帮助他们规划个性化的学习路径.在过去20多年中,知识追踪模型的构建通常基于统计学和认知科学的相关理论.随着教育大数据的开放和应用,基于深度神经网络的模型(以下简称“深度知识追踪模型”)以其简单的理论基础和优越的预测性能,逐渐取代了传统模型,成为知识追踪领域新的研究热点.根据所使用的神经网络结构,阐述近年来代表性深度知识追踪模型的算法细节,并在5个公开数据集上对这些模型的性能进行全面比较.最后讨论了深度知识追踪的应用案例和若干未来研究方向.
- 单位