摘要
针对传统的网络安全态势要素获取模型中,当样本分布不平衡时,占比很少的样本(统称小样本)不能被有效检测,准确识别到每一类攻击样本成为研究热点之一。利用深度学习提出了一种面向样本不平衡的要素获取模型,利用卷积神经网络作为基分类器提取网络数据的深层特征,其次使用GAN生成对抗网络扩充小样本的方法,解决样本分布不均衡问题。在扩充后的平衡数据集上采用迁移学习,加快基分类器到适应于小样本的新分类的训练时间。在NSL-KDD数据集上的实验表明,经过生成对抗网络扩充后的数据集,结合迁移学习有效加快了模型训练收敛速度,并有效提高网络安全态势要素获取的分类精度。
-
单位重庆邮电大学; 通信与信息工程学院