摘要

为实现齿轮箱故障特征提取,提出一种基于集成经验模态分解(EEMD)和乔-威廉姆斯分布(CWD)的齿轮箱振动信号特征的提取方法。对现场采集的振动信号进行EEMD分解,再对分解得到的固有模态函数(IMF)分量依照峭度准则进行排序,选取峭度指标较大的IMF分量进行CWD分析,最终得到信号的CWD.该方法可以有效抑制由于干扰项引起的频率混叠和干扰问题,有助于将原始信号在时间历程、频率成分和幅值大小3个方面的特征信息同时进行准确提取。利用该方法对实际齿轮发生断齿、裂纹故障进行了实验分析,结果表明:该方法能够全面、有效地提取齿轮振动信号中所蕴含的齿轮箱状态信息,为后续进行齿轮箱状态识别和故障诊断奠定基础。

  • 单位
    北京理工大学; 中国人民解放军陆军工程大学; 中国人民解放军总参谋部陆航研究所