针对目前金融领域文本存在标注资源匮乏的问题,提出一种基于生成对抗网络的金融文本情感分类方法.该方法以边缘堆叠降噪自编码器生成鲁棒性特征表示作为输入,在生成对抗过程中,通过向文本表示向量添加噪声向量再生成新样本,应用对抗学习思想优化文本特征表示.在公开的跨领域情感评论Amazon数据集和金融领域数据集上进行实验,并与基准实验对比,结果表明,该方法在平均准确率上有显著提升.