摘要
针对目前轨迹预测研究中交互建模方法使用的图注意力网络(GAT)为静态注意力,无法有效捕捉复杂道路场景中车辆间交互的问题,提出了一种基于编码器-解码器架构的动态图注意力网络(ED-DGAT)预测高速公路环境中运动车辆的未来轨迹。编码模块使用动态图注意力机制学习场景中车辆间的空间交互,采用状态简化动态图注意力网络建模解码阶段车辆运动的相互依赖,最后使用NGSIM数据集评估所提出的模型,并与长短时记忆(LSTM)、联合社交池化与长短时记忆(S-LSTM)、联合卷积社交池化与长短时记忆(CS-LSTM)算法模型进行对比分析,结果表明,预测轨迹的均方根误差(RMSE)降低了25%,且模型的推理速度为CS-LSTM模型的2.61倍。
- 单位