摘要

在不平衡数据分类问题中,作为目标对象的少数类往往不易识别.常见方法存在需要显式设置实例重要度、仅仅间接支持少数类的识别等缺点.由此,文中提出基于实例重要性的支持向量机——IISVM.它分为3个阶段.前两个阶段分别采用单类支持向量机和二元支持向量机,将数据按照"最重要"、"较重要",和"不重要"3个档次重新组织.阶段3首先选择最重要的数据训练初始分类器,并通过显式设置早停止条件,直接支持少数类的识别.实验表明,IISVM的平均分类性能优于目前的主流方法.

全文