摘要
针对射线缺陷检测图像对比度低、缺陷边缘模糊、噪声多、存在较大的背景起伏等缺点,传统缺陷检测方法难从焊缝缺陷图像中提取出对比度较低的目标缺陷的问题,该文提出了结合视觉显著性与脉冲耦合神经网络(PCNN)的缺陷分割算法。首先,利用LC算法对射线检测图像进行显著性区域检测,得到反映图像不同区域显著程度的显著图;其次,将所得到的显著图作为简化PCNN的输入图像,并利用最小交叉熵分割出感兴趣区域。实验结果表明,相较于传统的最大类间方差(Otsu)算法和脉冲耦合神经网络算法,采用该算法分割缺陷的效果较好,其分割边缘与细节信息的清晰度高,采用该算法分割缺陷的效果有较大提升。
-
单位电子工程学院; 西安石油大学