摘要
针对传统深度强化学习(Deep Reinforcement Learning,DRL)中收敛速度缓慢,经验重放组利用率低的问题,提出了灾害应急场景下基于多智能体深度强化学习(MADRL)的任务卸载策略。首先,针对MEC网络环境随时隙变化且当灾害发生时传感器数据多跳的问题,建立了灾害应急场景下基于MADRL的任务卸载模型;然后,针对传统DRL由高维动作空间导致的收敛缓慢问题,利用自适应差分进化算法(ADE)的变异和交叉操作探索动作空间,提出了自适应参数调整策略调整ADE的迭代次数,避免DRL在训练初期对动作空间的大量无用探索;最后,为进一步提高传统DRL经验重放组中的数据利用率,加入优先级经验重放技术,加速网络训练过程。仿真结果表明,所提算法ADE-DDPG相比改进的深度确定性策略梯度网络(Deep Deterministic Policy Gradient,DDPG)节约了35%的整体开销,验证了ADE-DDPG在性能上的有效性。
- 单位