摘要
为改善自然场景文本检测任务中存在的分割边界粗糙和多尺度文本漏检等问题,提出了一种多尺度特征融合方法。首先,将密集连接型金字塔池化(DenseASPP)和卷积块注意力模块(CBAM)与渐进式尺度扩展网络(PSENet)进行紧密结合,前者作为尺度感知模块,可以提取丰富的多尺度信息,感知不同规模的文本;而后者作为注意力模块,能够突出多尺度信息中的关键特征,改善边界定位。然后,在骨干网络中添加空洞卷积扩大感受野。最后,在后处理阶段采用渐进式扩展算法优化文字行合成。在ICDAR2015和ICDAR2017-MLT数据集上的实验结果表明,综合评估指标F值相较于PSENet分别提升了2.47%和6.57%。可视化结果表明,该方法能够更好地分割文本边界,检测出PSENet漏检的文本。
-
单位中国科学院大学; 中国科学院成都计算机应用研究所