摘要
本发明属于个性化推荐技术领域,公开了一种隐私保护的跨域推荐方法、系统、存储介质、计算机设备,包括:建立本地模型,针对各个域中的用户-项目关系图,基于图神经网络技术从图中学习用户、项目特征,利用交叉熵损失函数训练本地模型;上传模型梯度,将本地模型梯度添加基于瑞丽熵的差分隐私的噪声后上传给服务器,有效保护用户隐私;聚合更新模型,服务器使用FedAvg算法,聚合各个域上传的模型梯度,以此更新全局模型;利用全局模型来更新本地模型,迭代这个过程直至收敛。本发明能够在多域数据环境下实现有效推荐,并能保护多域训练数据隐私;能够在冷启动和数据稀疏的情况下,通过跨域的信息共享实现推荐;能够同时提高多个域上的推荐性能。
- 单位