摘要

传统U-Net语义分割模型在医学影像领域具有广泛的应用,但该模型的准确率受限于单一尺度的预测模式以及上下采样引起的信息丢失。针对上述问题,本文基于U-Net编码—解码架构以及空洞可分离卷积提出了一种高低层级信息丰富的多尺度医学影像语义分割算法,该算法由特征提取网络以及多尺度语义分割预测网络两部分构成。特征提取网络使用空洞可分离卷积和类残差块分别替换原U-Net中上、下采样以及卷积块,在增加感受野的同时使信息得到最大化的保留;提出一个通道注意力机制,强化目标核心特征的表达以及无关背景区域的抑制;在多尺度上挖掘带有图像级全局上下文的卷积特征,进一步提高分割性能。本文在采集的胚胎以及DRIVE数据集上进行仿真实验,其结果表明,与U-Net及其衍生模型相比该方法具有更高的准确率和鲁棒性。