摘要
针对跨越语义鸿沟方法中未考虑文本间语义相关性和样本数量增加时计算量过大的问题,提出了一种语义核SVM结合改进EMD跨越语义鸿沟方法.该方法首先考虑到文本特征间的语义关系,提取与图像共生的文本关键词,结合HowNet通用本体库和内部统计特征构造语义核函数,然后将语义核函数嵌入SVM进行关键词分类,得到最佳候选关键词,从而解决文本间语义相关性问题;再通过最佳减小矩阵对EMD算法进行改进,从而减小计算量.对比实验结果表明,该方法充分利用了与图像共生的文本特征间的语义关系,标注准确率明显高于其他3种方法,且标注时间缩短为其他方法的1/5左右.
- 单位