基于深度学习的航拍图像绝缘子缺失检测方法研究

作者:何宁辉; 王世杰; 刘军福; 张灏; 吴良方; 周秀
来源:电力系统保护与控制, 2021, 49(12): 132-140.
DOI:10.19783/j.cnki.pspc.200950

摘要

为解决目前人工处理分析无人机巡检图像效率低、检测结果受人为因素影响较大的问题,提出了一种图像识别的绝缘子缺失识别方法。首先,对无人机拍摄的图像样本进行了处理,扩充样本集。其次,搭建了绝缘子的检测模型,完成各层网络结构的选择和设计,使用CNN算法实现对绝缘子缺失的检测。随后,构建了绝缘子检测网络,并对各层检测网络参数进行配置。选择实际拍摄的图像作为训练样本进行网络训练。检测结果证实几个指标均在0.95以上,说明算法可准确识别出绝缘子。最后,利用CNN算法对航拍绝缘子进行缺陷检测。绝缘片缺失缺陷的正确识别率为86%。算法可根据检测结果自动显示绝缘子有无缺失缺陷。