摘要
针对现有基于信号特征的硬件木马检测方法中存在木马特征集单一、检测精度低和普适性差等问题,提出一种基于多信号特征融合的硬件木马识别方法。通过分析硬件木马的隐藏性,建立触发节点植入与载荷节点植入的硬件木马隐藏性模型,构造低静态翻转率、低动态翻转率、低组合0可控性、低组合1可控性和低组合可观察性的硬件木马特征集,利用KNN算法建立硬件木马检测模型。实验结果表明,该方法达到了98.23%的木马信号平均识别率,与文献[3]和文献[15]相比,分别提高了16.30%和10.24%,大幅提升了木马检测能力。
-
单位信息工程大学