摘要

提出了一种基于视频先验信息的轻量化去噪卷积神经网络.先验信息从近邻的多帧视频图像中获取,采用了基于预去噪的视频运动补偿方法消除噪声和运动偏移对信息获取准确度的影响.为降低卷积神经网络复杂度,构建了基于双路处理的卷积神经网络用于去除视频噪声,特别是设计了双路稠密连接单元,实现了网络的轻量化.双路稠密连接单元通过高、低分辨率特征分解和特征拼接,有效降低了网络复杂度.实验结果表明:采用本文方法去除视频噪声能够获得较好的客观评价结果和主观视觉结果 .此外,在减少网络参数、降低浮点运算次数和提升运行速度方面均体现出了良好性能.