摘要
针对传统算法对多角度人脸表情识别效果不佳、偏转角下生成的人脸正面化图像质量低等问题,提出了一种结合双通道WGAN-GP的多角度人脸表情识别算法。传统模型仅利用侧脸特征对多角度人脸进行表情识别,特征差异小导致识别精度低。因此,引入生成对抗网络对人脸进行转正,消除姿态角的影响。为了使模型稳定训练的同时提升人脸生成质量,以WGAN-GP作为基础网络,并将其改进为双通道结构,融合五官特征及人脸全局特征来进行正面化生成。最后,构建轻量级网络MobileNetV3对生成出的正面人脸表情图像进行识别,保证分类精度并且大幅减小参数运算量。实验结果表明,所提算法在任意角度下,都能较好地复原出正面化人脸表情图像,提高了多角度人脸表情的识别率。
- 单位