摘要
为了精确预测水产养殖溶解氧变化趋势,该研究提出了基于K-means聚类和改进粒子群优化(Improved Particle Swarm Optimization,IPSO)的长短时记忆(Long Short-term Memory,LSTM)神经网络预测模型。根据环境因子间的相似度,应用改进的K-means聚类算法将环境数据划分为若干类。在此基础上,基于LSTM神经网络算法构建改进的水产养殖溶解氧预测模型,并引入改进粒子群优化算法对模型参数进行优化,以减少经验选取参数的盲目性。在不同天气状况下利用该模型对溶解氧进行预测。试验结果表明,在良好天气情况下,该模型预测误差曲线波动较小,预测精度更高。当天气发生突变时,溶解氧预测模型评价指标平均绝对百分误差、均方根误差、平均绝对误差和纳什系数分别为0.129 5、0.645 3、0.461 3和0.902 2。该模型一定程度改善了天气突变状况下的数据缺失、鲁棒性差等问题。
- 单位