摘要
大众在旅游途中期望获得开销低、行程方便、舒适度高的旅游体验,同时还具有历史人文、自然景观、美食购物等不同游览需求.因此,本文提出了一种基于改进混合蛙跳算法的个性化旅游路线推荐方法.首先建立个性化旅游路线推荐问题的优化模型,并针对该模型的特点,设计改进混合蛙跳算法.通过调整可控精度,增加筛选准则和及时处理异常解等策略增强群体的多样性,降低遗漏最优解的风险,强化局部搜索能力,并提高算法的求解精度.以南京三日游个性化旅游路线推荐问题作为实例,收集南京市内知名景点的门票价格、开放时间、不同出行方式所需的时间和花费情况以及食宿费用等相关数据,基于改进混合蛙跳算法进行求解.实验结果表明,与改进前的方法相比,所提改进方法能够获取更优的路径解,推荐的路线能够更好地满足用户的个性需求.
-
单位南京信息工程大学; 自动化学院