摘要

文章主要将Bernstein基函数中的变量u用函数f(u)代替,将Bernstein基函数进行了推广,生成了新的Bézier曲线,称为拟Bézier曲线。讨论了基函数及其生成的曲线的构造和性质。这种拟Bézier曲线不仅有Bézier曲线的优良性质,而且还产生了一些新的特性,如通过调节因子λ的值可以改变拟Bézier曲线的次数[1],同时拟Bézier曲线也可以通过类似的De Casteljau算法来实现拟De Casteljau算法的几何作图法。但不同的是,对相同参数u,Bézier曲线与拟Bézier曲线所对应的点Vi的位置不同。最后讨论了曲线间的拼接问题,其在应用中有一定的研究价值。