基于集成学习的强鲁棒性三维点云数据分类研究

作者:王晓红; 谌鹏; 刘芳; 杜景敏; 许禾昕; 唐丰圆; 方加炜
来源:包装工程, 2021, 42(03): 252-258.
DOI:10.19554/j.cnki.1001-3563.2021.03.036

摘要

目的通过三维扫描仪得到的点云数据往往存在很多异常值,例如噪点、遗失点和外部点等。在这些异常值存在的情况下,为了提高三维点云数据的分类精度,提出一种基于集成学习的强鲁棒性三维点云数据分类方法。方法提出一种基于最大投票法的集成学习思想,将2个深度神经网络的分类结果进行集成,从而提高网络的泛化性和准确性;采用全局特征增强和中心损失函数来优化神经网络结构,提高分类精度并增强鲁棒性。结果文中方法缩短模型训练时间至30个迭代次数,且在有噪点、丢失点和外部点的情况下分类精度均得到有效提升。结论提出的EL-3D算法在含有噪点、丢失点和外部点的情况下,鲁棒性效果要优于目前的点云分类方法。

全文