摘要
四旋翼飞行器因存在参数不确定性和环境干扰,会出现姿态不稳定的问题,而传统的PID控制对四旋翼的姿态稳定及机动性达不到控制需求。为此,提出了一种扩张状态观测器(ESO)的RBF神经网络PID控制器。首先,利用ESO的扩张特性和非线性函数对扰动进行估计和补偿,减少系统的误差;其次,将ESO对系统输出的估计值作为RBF神经网络的输入,使梯度信息更加精确,能够更好地优化增量PID的参数;最后,该神经网络的激励函数取高斯基函数,利用RBF神经网络的自适应性、自学习能力对模型控制参数进行调整。Matlab仿真实验表明,在未知干扰环境下,ESO的RBF神经网络PID控制器能够明显提高系统的抗干扰能力,且具有较小的超调量及较好的鲁棒性。