提出一个文本分类器性能评价模型,对文本分类结果的可信度进行了估计,给出计算可信度的公式。将每一个子分类器的可信度指标用于Bagging集成学习算法,得到了改进的基于子分类器性能评价的Bagging算法(PBagging)。应用支持向量机作为子分类器基本模型,对日本共同社大样本新闻集进行分类。实验表明,与Bagging算法相比,PBagging算法分类准确率有了明显提高。