摘要

针对标准粒子群优化算法早熟收敛、易陷入局部最优、收敛精度低等缺点,提出了一种改进的自适应粒子群算法.该算法在每次进化后自适应地更新每个粒子的惯性权重和学习因子,并对粒子进行排序,实现了自适应调整局部搜索和全局搜索的功能.与标准粒子群算法在6个标准测试函数上的实验进行比较并进行了t检验分析.结果表明,该算法具有很好的性能.