摘要
如何设计合理的属性子空间区间是序贯三支分类研究的重要内容之一。考虑到实际应用中广泛存在的数值数据,将邻域粗糙集及邻域决策错误率引入序贯三支分类方法中,构建合理的属性子空间区间。借助邻域决策错误率约简,分别定义局部和全局属性子空间,并基于此设计基于邻域决策错误率的序贯三支分类算法。在6组UCI数据集上的实验结果表明,该分类方法不仅压缩了数据的属性空间,而且提高了数据的分类精度,为序贯三支分类方法的研究提供了新的思路。
-
单位太原师范学院; 山西大学