摘要
传统的特征选择方法对于高维微阵列具有较大的局限性,难以准确高效地提出最佳特征子集。针对该问题,提出了基于wrapper的多策略混合人工蜂群算法,该算法混合了混沌反向学习策略、精英引导策略、Mantegna Lévy分布策略,分别在雇佣蜂与观察蜂阶段提出了两种新的搜索策略。针对于微阵列高维特征选择问题,提出新的平衡模型性能最优与特征子集规模最小化目标函数。实验结果表明:该算法能够达到较高的分类准确率,可在一定程度上取得特征子集规模最小化的目标,且优于GABC等改进算法与樽海鞘群等六种新型智能算法。
- 单位